Life Sciences & Bioengineering
Titanium Textiles for Next-Generation Biomedical Applications
Life sciences form an interdisciplinary field that explores the fundamental mechanisms of living systems across biology, medicine and biochemistry. Bioengineering applies engineering principles to biological processes and materials, enabling and advancing cutting-edge applications such as medical implants, tissue engineering and biotechnological manufacturing.
By integrating materials science, cell biology and technological innovation, novel solutions emerge for medicine – including personalized therapies – as well as for industrial and environmental applications. Both basic research and translational development are central to this dynamic field.
Challenges.
Innovation.
Solution.
Replicating complex tissue structures, optimizing cell culture conditions and ensuring long-term biocompatibility remain key challenges in tissue engineering. Conventional materials often fall short, unable to meet both mechanical and biological requirements simultaneously. This can result in poor cell adhesion, insufficient vascularization and uncontrolled material degradation – factors that significantly hinder tissue growth and integration within biological systems.
Our innovative technology delivers high-performance, biocompatible scaffolds based on elastic titanium structures. Combining superior biocompatibility, mechanical flexibility and optimal cell integration, our approach overcomes the limitations of traditional materials and sets new standards in regenerative medicine.
Fields of Indication
Tissue Engineering & Bone Reconstruction
Tissue Engineering zielt darauf ab, funktionelle Gewebe durch die Kombination von Zellen, Biomaterialien und bioaktiven Faktoren zu entwickeln. Insbesondere in der Knochenrekonstruktion sind stabile, zellfreundliche Gerüststrukturen essenziell. Sie bieten nicht nur mechanische Stabilität und eine geeignete Architektur für Zellmigration und -verankerung, sondern vermitteln auch biochemische Signale, die das Zellverhalten gezielt steuern.
Wir entwickeln innovative Scaffolds aus reinem Titan, die nicht nur mechanische Stabilität gewährleisten, sondern auch die natürliche extrazelluläre Matrix nachahmen. Damit schaffen sie eine optimale Umgebung für Zelladhäsion, -wachstum und -differenzierung und fördern die natürliche Gewebebildung. Unsere langlebigen, funktionellen Implantate ermöglichen nachhaltige Lösungen für medizinische Anwendungen.
Organoide
Organoide sind organähnliche Mikrogewebe, die in der biomedizinischen Forschung zur Modellierung von Krankheiten, zum Studium der Organentwicklung und zur Entwicklung sowie zum Testen von Arzneimitteln eingesetzt werden. Besonders nützlich sind sie in der personalisierten Medizin, da sie aus Patientenbiopsien hergestellt werden können, was direkte Tests von Medikamenten ermöglicht. Um physiologische Bedingungen zu simulieren, benötigen Organoide komplexe dreidimensionale Umgebungen, was ihre Anwendung in der Forschung weiter verstärkt.
Unsere porösen, biokompatiblen Titanstrukturen bieten eine dreidimensionale Umgebung und zellgerechtes Mikroklima, das die zelluläre Differenzierung und Funktion in Organoidmodellen effektiv unterstützt.
Bioartifizielle Organe
Bioartifizielle Organe kombinieren lebende Zellen mit Biomaterialien, um geschädigte Organfunktionen zu ersetzen oder zu ergänzen. Sie vereinen die Vorteile von Zelltransplantationen und Implantaten und bieten eine immunverträgliche, langlebige Alternative zu natürlichen Organen. Durch die Integration lebender Zellen in Scaffolds ermöglichen sie biochemische Funktionen, reduzieren den Bedarf an Transplantationen und bieten lebensrettende Therapien. Dafür sind hochbelastbare, gewebeähnliche Materialien erforderlich, die mechanische Stabilität, Zelladhäsion und -differenzierung optimal unterstützen.
Unsere biokompatiblen Titan-Scaffolds bieten hohe mechanische Stabilität und fördern optimale Zelladhäsion, wodurch sie langfristige Zellintegration und Gewebeentwicklung unterstützen. Dank ihrer anpassbaren Oberflächenstruktur ermöglichen sie die Konstruktion funktionaler Organimplantate und tragen so zur Weiterentwicklung regenerativer Therapien bei.
Tissue Engineering
Tissue engineering aims to create functional tissue by combining cells, biomaterials and bioactive factors in a targeted way. In bone reconstruction especially, stable and cell-friendly scaffold structures are essential. They not only provide mechanical stability and a suitable architecture for cell migration and anchorage but also deliver biochemical signals that actively guide cellular behavior.
We develop innovative scaffolds made from pure titanium that combine mechanical strength with a biomimetic design inspired by the natural extracellular matrix. This creates an optimal environment for cell adhesion, growth and differentiation, supporting natural tissue regeneration. Our durable, functional implants enable sustainable solutions for advanced medical applications.
Organoids
Organoids are organ-like microtissues used in biomedical research to model diseases, study organ development and support drug discovery and testing. They are especially valuable in personalized medicine, as they can be derived from patient biopsies – enabling individual drug testing and tailored therapeutic strategies. To mimic physiological conditions, organoids require complex, three-dimensional environments, which further enhances their relevance in research and development.
Our porous, biocompatible titanium structures provide a highly functional 3D environment with a cell-friendly microclimate. They effectively support cellular differentiation and function in organoid models – contributing to the advancement of personalized and translational research.
Bioartificial Organs
Bioartificial organs combine living cells with biomaterials to replace or support impaired organ functions. They merge the benefits of cell transplantation and implants, offering an immunocompatible and durable alternative to natural organs. By integrating cells into scaffolds, they perform biochemical functions, reduce the need for transplants and enable new therapeutic approaches.
Our biocompatible titanium scaffolds offer high mechanical stability and promote cell adhesion – key factors for long-term integration and tissue formation. Their adaptable surface supports the development of functional organ implants and drives innovation in regenerative therapies.
3D Cell Cultures
Cell cultures are essential for research, diagnostics and biotechnological production. Especially 3D cell cultures offer physiologically relevant models that simulate cellular interactions, proliferation and differentiation. Reliable results depend on optimal growth conditions and high reproducibility.
Our titanium-based cell culture scaffolds provide a stable, homogeneous environment for long-term cultivation. Key structure parameters – such as pore size, material thickness and surface features like nanotopography or tailored hydrophilicity – can be precisely tuned to support cell adhesion and differentiation.
Bioreactors
Bioreactors are specialized systems that enable biological processes under controlled conditions. They support the growth and production of microorganisms and animal or plant cells for the manufacturing of biological products. Immobilizing cells in fixed or fluidized bed reactors increases cell density, boosting productivity and process efficiency.
We use titanium mesh structures to immobilize cells within solid or fluidized reactor beds. This protects cells from shear stress and enables significantly higher densities compared to suspension cultures. The result: more compact reactors, reduced costs and simplified downstream processing.